Scikit-Learn Exporter Module¶
-
def
any_in
(seq_a, seq_b)[source]¶ Checks for common elements in two given sequence elements
Parameters: - seq_a (list) – A list of items
- seq_b (list) – A list of items
Returns: Return type: Returns a boolean value if any item of seq_a belongs to seq_b or visa versa
-
def
avgPathLength
(n)[source]¶ Generates average path length for Isolation forest models
Parameters: n (int) – Number of samples Returns: Return type: The average path length
-
def
get_PMML_kwargs
(model, derived_col_names, col_names, target_name, mining_imp_val, categoric_values, model_name)[source]¶ It returns all the pmml elements.
Parameters: - model (Scikit-learn model object) – An instance of Scikit-learn model.
- derived_col_names (List) – Contains column names after preprocessing
- col_names (List) – Contains list of feature/column names.
- target_name (String) – Name of the target column .
- mining_imp_val (tuple) – Contains the mining_attributes,mining_strategy, mining_impute_value
- categoric_values (tuple) – Contains Categorical attribute names and its values
- model_name (string) – Name of the model
Returns: algo_kwargs – Get the PMML model argument based on scikit learn model object
Return type: Dictionary
-
def
get_anomaly_detection_output
(model)[source]¶ Generates output for anomaly detection models
Parameters: model – Scikit-learn’s model object Returns: Returns Nyoka’s Output object Return type: output_fields
-
def
get_anomalydetection_model
(model, derived_col_names, col_names, target_name, mining_imp_val, categoric_values, model_name)[source]¶ Creates xml elements for anomaly detction models
Parameters: - model – An instance of Scikit-learn model.
- derived_col_names (List) – Contains column names after preprocessing
- col_names (List) – Contains list of feature/column names.
- target_name (String) – Name of the Target column.
- mining_imp_val (tuple) – Contains the mining_attributes,mining_strategy, mining_impute_value
- categoric_values (tuple) – Contains Categorical attribute names and its values
- model_name (string) – Name of the model
Returns: anomaly_detection_model – Returns Nyoka’s AnomalyDetectionModel object
Return type: List
-
def
get_bayes_inputs
(model, derived_col_names)[source]¶ It returns the Bayes Input element of the naive bayes model .
Parameters: - model – An instance of Scikit-learn model.
- derived_col_names (List) – Contains column names after preprocessing.
Returns: Returns Nyoka’s BayesInput object.
Return type: bayes_inputs
-
def
get_bayes_output
(model, target_name)[source]¶ It returns the Bayes Output element of the model
Parameters: - model – An instance of Scikit-learn model.
- target_name (String) – Name of the Target column.
Returns: Returns Nyoka’s BayesOutput object
Return type:
-
def
get_classificationMethod
(model)[source]¶ It returns the Classification method name for SVM models.
Parameters: model – A Scikit-learn model instance. Returns: Return type: Returns the classification method of the SVM model
-
def
get_cluster_num
(model)[source]¶ Returns number of cluster for clustering models
Parameters: model – An instance of Scikit-learn model. Returns: model.n_clusters – Returns the number of clusters Return type: Integer
-
def
get_cluster_vals
(model, counts)[source]¶ Generates cluster information for clustering models
Parameters: model – An instance of Scikit-learn model. Returns: cluster_flds – Returns Nyoka’s Cluster object Return type: List
-
def
get_clustering_flds
(col_names)[source]¶ Generates cluster fields for clustering models
Parameters: col_names – Contains list of feature/column names. Returns: clustering_flds – Returns Nyoka’s ClusteringField object Return type: List
-
def
get_clustering_model
(model, derived_col_names, col_names, target_name, mining_imp_val, categoric_values, model_name)[source]¶ Generates PMML elements for clustering models
Parameters: - model – An instance of Scikit-learn model.
- derived_col_names (List) – Contains column names after preprocessing
- col_names (List) – Contains list of feature/column names.
- target_name (String) – Name of the Target column.
- mining_imp_val (tuple) – Contains the mining_attributes,mining_strategy, mining_impute_value
- categoric_values (tuple) – Contains Categorical attribute names and its values
- model_name (string) – Name of the model
Returns: clustering_models – Returns Nyoka’s ClusteringModel object
Return type: List
-
def
get_comp_measure
()[source]¶ Generates comparison measure information for clustering models
Returns: Return type: Returns Nyoka’s ComparisonMeasure object
-
def
get_comparison_measure
(model)[source]¶ It return the Comparison measure element for nearest neighbour model.
Parameters: model – An instance of Scikit-learn model. Returns: Returns Nyoka’s ComparisonMeasure object. Return type: comp_measure
-
def
get_data_dictionary
(model, feature_names, target_name, categoric_values)[source]¶ It returns the Data Dictionary element.
Parameters: - model – A Scikit-learn model instance.
- feature_names (List) – Contains the list of feature/column name.
- target_name (List) – Name of the Target column.
- categoric_values (tuple) – Contains Categorical attribute names and its values
Returns: Returns Nyoka’s DataDictionary object
Return type: data_dict
-
def
get_dtype
(feat_value)[source]¶ It return the data type of the value.
Parameters: feat_value – Contains a value for finding the its data type. Returns: Return type: Returns the respective data type of that value.
-
def
get_ensemble_models
(model, derived_col_names, col_names, target_name, mining_imp_val, categoric_values, model_name)[source]¶ Generates PMML elemenets for ensemble models
Parameters: - model – An instance of Scikit-learn model.
- derived_col_names (List) – Contains column names after preprocessing.
- col_names (List) – Contains list of feature/column names.
- target_name (String) – Name of the Target column.
- mining_imp_val (tuple) – Contains the mining_attributes,mining_strategy, mining_impute_value.
- categoric_values (tuple) – Contains Categorical attribute names and its values
- model_name (string) – Name of the model
Returns: mining_models – Returns Nyoka’s MiningModel object
Return type: List
-
def
get_funct
(sk_model)[source]¶ It returns the activation fucntion for a neural network model.
Parameters: model – A Scikit-learn model instance. Returns: a_fn – Returns the activation function. Return type: String
-
def
get_header
(description)[source]¶ It returns the Header element of the pmml.
- header :
- Returns Nyoka’s Header object.
-
def
get_inline_table
(model)[source]¶ It Returns the Inline Table element of the model.
Parameters: model – An instance of Scikit-learn model. Returns: Returns Nyoka’s InlineTable object Return type: InlineTable
-
def
get_inner_segments
(model, derived_col_names, col_names, index)[source]¶ It returns the segments of a Segmentation.
Parameters: - model – A Scikit-learn model instance.
- derived_col_names (List) – Contains column names after preprocessing.
- col_names (List) – Contains list of feature/column names.
- index (Integer) – The index of the estimator for the model
Returns: segments – Nyoka’s Segment object
Return type: List
-
def
get_instance_fields
(derived_col_names, target_name)[source]¶ It returns the Instance field element.
Parameters: - derived_col_names (List) – Contains column names after preprocessing.
- target_name (String) – Name of the Target column.
Returns: Returns Nyoka’s InstanceFields object
Return type:
-
def
get_kernel_type
(model)[source]¶ It returns the kernel type element.
Parameters: model – A Scikit-learn model instance. Returns: kernel_kwargs – Get the respective kernel type of the SVM model. Return type: Dictionary
-
def
get_knn_inputs
(col_names)[source]¶ It returns the KNN Inputs element.
Parameters: col_names (List) – Contains list of feature/column names. Returns: Returns Nyoka’s KNNInputs object. Return type: KNNInputs
-
def
get_mining_func
(model)[source]¶ It returns the name of the mining function of the model.
Parameters: model – A Scikit-learn model instance. Returns: func_name – Returns the function name of the model Return type: String
-
def
get_mining_schema
(model, feature_names, target_name, mining_imp_val, categoric_values)[source]¶ It returns the Mining Schema of the model.
Parameters: - model – A Scikit-learn model instance.
- feature_names (List) – Contains the list of feature/column name.
- target_name (String) – Name of the Target column.
- mining_imp_val (tuple) – Contains the mining_attributes,mining_strategy, mining_impute_value.
- categoric_values (tuple) – Contains Categorical attribute names and its values
Returns: Nyoka’s MiningSchema object
Return type:
-
def
get_model_kwargs
(model, col_names, target_name, mining_imp_val, categoric_values)[source]¶ It returns all the model element for a specific model.
Parameters: - model – An instance of Scikit-learn model.
- col_names (List) – Contains list of feature/column names.
- target_name (String) – Name of the Target column.
- mining_imp_val (tuple) – Contains the mining_attributes,mining_strategy, mining_impute_value
- categoric_values (tuple) – Contains Categorical attribute names and its values
Returns: model_kwargs – Returns function name, MiningSchema and Output of the sk_model object
Return type: Dictionary
-
def
get_multiple_model_method
(model)[source]¶ It returns the type of multiple model method for MiningModels.
Parameters: model – A Scikit-learn model instance Returns: Return type: The multiple model method for a MiningModel.
-
def
get_naiveBayesModel
(model, derived_col_names, col_names, target_name, mining_imp_val, categoric_values, model_name)[source]¶ Generates PMML elements for naive bayes models
Parameters: - model – An instance of Scikit-learn model.
- derived_col_names (List) – Contains column names after preprocessing.
- col_names (List) – Contains list of feature/column names.
- target_name (String) – Name of the Target column.
- mining_imp_val (tuple) – Contains the mining_attributes,mining_strategy, mining_impute_value
- categoric_values (tuple) – Contains Categorical attribute names and its values
- model_name (string) – Name of the model
Returns: naive_bayes_model – Returns Nyoka’s NaiveBayesModel
Return type: List
-
def
get_nearestNeighbour_model
(model, derived_col_names, col_names, target_name, mining_imp_val, categoric_values, model_name)[source]¶ Generates PMML elements for nearest neighbour model
Parameters: - model – An instance of Scikit-learn model.
- derived_col_names (List) – Contains column names after preprocessing
- col_names (List) – Contains list of feature/column names.
- target_name (String) – Name of the Target column.
- mining_imp_val (tuple) – Contains the mining_attributes,mining_strategy, mining_impute_value
- categoric_values (tuple) – Contains Categorical attribute names and its values
- model_name (string) – Name of the model
Returns: Returns Nyoka’s NearestNeighborModel object
Return type: nearest_neighbour_model
-
def
get_neural_layer
(model, feature_names, target_name)[source]¶ It returns the Neural Layer and Neural Ouptput element.
Parameters: - model – A Scikit-learn model instance.
- feature_names (List) – Contains the list of feature/column name.
- target_name (String) – Name of the Target column.
Returns: - all_neuron_layer (List) – Nyoka’s NeuralLayer object
- neural_output_element – Nyoka’s NeuralOutput object
-
def
get_neural_models
(model, derived_col_names, col_names, target_name, mining_imp_val, categoric_values, model_name)[source]¶ Generates PMML elements for neural network models
Parameters: - model – A Scikit-learn model instance.
- derived_col_names (List) – Contains column names after preprocessing.
- col_names (List) – Contains list of feature/column names.
- target_name (String) – Name of the Target column.
- mining_imp_val (tuple) – Contains the mining_attributes,mining_strategy, mining_impute_value.
- categoric_values (tuple) – Contains Categorical attribute names and its values
- model_name (string) – Name of the model
Returns: neural_model – Nyoka’s NeuralNetwork object
Return type: List
-
def
get_neuron_input
(feature_names)[source]¶ It returns the Neural Input element.
Parameters: feature_names (List) – Contains the list of feature/column name. Returns: Returns Nyoka’s NeuralInput object Return type: neural_input_element
-
def
get_node
(model, features_names, main_model=None)[source]¶ It return the Node element of the model.
Parameters: - model – An instance of the estimator of the tree object.
- features_names (List) – Contains the list of feature/column name.
- main_model – A Scikit-learn model instance.
Returns: Return type: Get all the underlying Nodes.
-
def
get_outer_segmentation
(model, derived_col_names, col_names, target_name, mining_imp_val, categoric_values, model_name)[source]¶ It returns the Segmentation element of a MiningModel.
Parameters: - model – A Scikit-learn model instance.
- derived_col_names (List) – Contains column names after preprocessing.
- col_names (List) – Contains list of feature/column names.
- target_name (String) – Name of the Target column.
- mining_imp_val (tuple) – Contains the mining_attributes,mining_strategy, mining_impute_value
- categoric_values (tuple) – Contains Categorical attribute names and its values
Returns: Nyoka’s Segmentation object
Return type: segmentation
-
def
get_output
(model, target_name)[source]¶ It returns the output element of the model.
Parameters: - model – A Scikit-learn model instance.
- target_name (String) – Name of the Target column.
Returns: Nyoka’s Output object
Return type:
-
def
get_output_for_clustering
(values)[source]¶ Generates output for clustering models
Parameters: model – An instance of Scikit-learn model. Returns: output_fields – Returns Nyoka’s Output object Return type: List
-
def
get_reg_mining_models
(model, derived_col_names, col_names, target_name, mining_imp_val, categoric_values, model_name)[source]¶ Creates xml elements for multi-class linear models
Parameters: - model – An instance of Scikit-learn model.
- derived_col_names (List) – Contains column names after preprocessing
- col_names (List) – Contains list of feature/column names.
- target_name (String) – Name of the Target column.
- mining_imp_val (tuple) – Contains the mining_attributes,mining_strategy, mining_impute_value
- categoric_values (tuple) – Contains Categorical attribute names and its values
- model_name (string) – Name of the model
Returns: mining_model – Returns a Nyoka’s MiningModel object
Return type: List
-
def
get_reg_tab_for_reg_mining_model
(model, col_names, index, categorical_values)[source]¶ Generates Regression Table for multi-class linear models
Parameters: - model – An instance of Scikit-learn model.
- col_names (List) – Contains list of feature/column names.
- index (int) –
- categoric_values (tuple) – Contains Categorical attribute names and its values
Returns: Return type: Returns Nyoka’s RegressionTable object
-
def
get_regrs_models
(model, derived_col_names, col_names, target_name, mining_imp_val, categoric_values, model_name)[source]¶ Generates PMML elements for linear models
Parameters: - model – A Scikit-learn model instance.
- derived_col_names (List) – Contains column names after preprocessing.
- col_names (List) – Contains list of feature/column names.
- target_name (String) – Name of the Target column.
- mining_imp_val (tuple) – Contains the mining_attributes,mining_strategy, mining_impute_value
- categoric_values (tuple) – Contains Categorical attribute names and its values
- model_name (string) – Name of the model
Returns: regrs_models – Nyoka’s RegressionModel object
Return type: List
-
def
get_regrs_tabl
(model, feature_names, target_name, categoric_values)[source]¶ It returns the Regression Table element of the model.
Parameters: - model – A Scikit-learn model instance.
- derived_col_names (List) – Contains column names after preprocessing.
- target_name (String) – Name of the Target column.
- categoric_values (tuple) – Contains Categorical attribute names and its values
Returns: merge – Nyoka’s RegressionTable object
Return type: List
-
def
get_segments
(model, derived_col_names, col_names, target_name, mining_imp_val, categoric_values, model_name)[source]¶ It returns the Segment element of a Segmentation.
Parameters: - model – A Scikit-learn model instance.
- derived_col_names (List) – Contains column names after preprocessing.
- col_names (List) – Contains list of feature/column names.
- target_name (String) – Name of the Target column.
- mining_imp_val (tuple) – Contains the mining_attributes,mining_strategy, mining_impute_value
- categoric_values (tuple) – Contains Categorical attribute names and its values
Returns: Nyoka’s Segment object
Return type: segments
-
def
get_segments_for_gbc
(model, derived_col_names, col_names, target_name, mining_imp_val, categoric_values, model_name)[source]¶ It returns list of Segments element of a Segmentation.
Parameters: - model – A Scikit-learn model instance.
- derived_col_names (List) – Contains column names after preprocessing.
- col_names (List) – Contains list of feature/column names.
- target_name (String) – Name of the Target column.
- mining_imp_val (tuple) – Contains the mining_attributes,mining_strategy, mining_impute_value
- categoric_values (tuple) – Contains Categorical attribute names and its values
Returns: segments – Nyoka’s Segment object
Return type: List
-
def
get_super_cls_names
(model_inst)[source]¶ It returns the set of Super class of the model.
Parameters: model_inst – Instance of the scikit-learn model Returns: parents – Returns all the parent class of the model instance. Return type: Set
-
def
get_supportVectorMachine
(model)[source]¶ Generates PMML elements for support vector machine models
Parameters: model – A Scikit-learn model instance. Returns: support_vector_machines – Nyoka’s SupportVectorMachineModel object Return type: List
-
def
get_supportVectorMachine_models
(model, derived_col_names, col_names, target_names, mining_imp_val, categoric_values, model_name)[source]¶ Generates PMML elements for support vector machine models
Parameters: - model – An instance of Scikit-learn model.
- derived_col_names (List) – Contains column names after preprocessing.
- col_names (List) – Contains list of feature/column names.
- target_names (String) – Name of the Target column.
- mining_imp_val (tuple) – Contains the mining_attributes,mining_strategy, mining_impute_value
- categoric_values (tuple) – Contains Categorical attribute names and its values
- model_name (string) – Name of the model
Returns: supportVector_models – Returns Nyoka’s SupportVectorMachineModel object
Return type: List
-
def
get_targets
(model, target_name)[source]¶ It returns the Target element of the model.
Parameters: - model – A Scikit-learn model instance.
- target_name (String) – Name of the Target column.
Returns: Returns Nyoka’s Target object
Return type: targets
-
def
get_threshold
()[source]¶ It returns the Threshold value for Naive Bayes models.
Returns: Return type: Returns the Threshold value
-
def
get_training_instances
(model, derived_col_names, target_name)[source]¶ It returns the Training Instance element.
Parameters: - model – An instance of Scikit-learn model.
- derived_col_names (List) – Contains column names after preprocessing
- target_name (String) – Name of the Target column.
Returns: Returns Nyoka’s TrainingInstances object
Return type:
-
def
get_tree_models
(model, derived_col_names, col_names, target_name, mining_imp_val, categoric_values, model_name)[source]¶ Generates PMML elements for tree models
Parameters: - model – A Scikit-learn model instance.
- derived_col_names – Contains column names after preprocessing.
- col_names (List) – Contains list of feature/column names.
- target_name (String) – Name of the Target column.
- mining_imp_val (tuple) – Contains the mining_attributes,mining_strategy, mining_impute_value
- categoric_values (tuple) – Contains Categorical attribute names and its values
- model_name (string) – Name of the model
Returns: tree_models – Nyoka’s TreeModel object
Return type: List
-
def
get_vectorDictionary
(model, derived_col_names, categoric_values)[source]¶ It return the Vector Dictionary element.
Parameters: - model – A Scikit-learn model instance.
- derived_col_names (List) – Contains column names after preprocessing.
- categoric_values (tuple) – Contains Categorical attribute names and its values
Returns: Nyoka’s VectorDictionary object
Return type:
-
def
has_target
(model)[source]¶ Checks whether a given model has target or not
Parameters: model – Scikit-learn’s model object Returns: Return type: Boolean value
-
def
skl_to_pmml
(pipeline, col_names, target_name='target', pmml_f_name='from_sklearn.pmml', model_name=None, description=None)[source]¶ Exports scikit-learn pipeline object into pmml
Parameters: - pipeline – Contains an instance of Pipeline with preprocessing and final estimator
- col_names (List) – Contains list of feature/column names.
- target_name (String) – Name of the target column. (Default=’target’)
- pmml_f_name (String) – Name of the pmml file. (Default=’from_sklearn.pmml’)
- model_name (string (optional)) – Name of the model
- description (string (optional)) – Description of the model
Returns: Return type: Generates a PMML object and exports it to pmml_f_name